Detecting and Locating of Brain Abnormality in MR Images Using Texture Feature Analysis and Improved Probabilistic Relaxation Methods

نویسنده

  • YAO-MING YU
چکیده

Medical imaging has become a major tool in clinical trials since it enables rapid diagnosis with visualization and quantitative assessment. In the study, a detecting method of brain abnormality is proposed through magnetic resonance imaging. The proposed method is composed of four procedures. First the preprocessing is employed to remove noises and enhance the homogeneity of soft tissues. After preprocessing, we adopt the spatial gray level dependence method to compute four texture features of each image. Then, the improved probability relaxation method is applied to discriminate the brain abnormality with extracted texture information. The isolated noises are removed by using neighborhood processing. Final the performance of the improved method has been evaluated and compared to the original method. This proposed method performs better results than the other one, which can be used in further processing stages. We have developed a computer-aided detection system to distinguish the tumor and find the location and coarse contour from brain MRIs. The system can assist doctors to diagnose whether the brain has abnormal and train inexperienced doctors. The proposed algorithm can play a useful role for storage, filtering and indexing of mass MRI data, and furthermore it provides an initial step to find accurate tumor boundaries. Key-Words: Computer-Aided Detection System, Texture Feature Analysis, Spatial Gray Level Dependence, Probability Relaxation Method, Magnetic Resonance Image, Brain Tumor

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Brain Tumor MR Image Classification Accuracy Using Optimal Threshold, PCA and Training ANFIS with Different Repetitions

Background: One of the leading causes of death is brain tumors. Accurate tumor classification leads to appropriate decision making and providing the most efficient treatment to the patients. This study aims to optimize brain tumor MR images classification accuracy using optimal threshold, PCA and training Adaptive Neuro Fuzzy Inference System (ANFIS) with different repetitions.Material and Meth...

متن کامل

Measurement of the correlation coefficients between extracted features from CT and MR images

Introduction: Nowadays applying computer in image processing is being improved revolutionary for solving medical images deficiencies. Image features that are analysis in image processing show image information. The aim of the present study was to find correlation between CT- scan and MRI images' features. Materials and Methods: After data acquisition, applying...

متن کامل

Optimization of the brain tumor MR images classification accuracy using the optimal threshold, PCA and training ANFIS with different repetitions

Introduction: One of the leading causes of death among people is brain tumors. Accurate tumor classification leads to appropriate decision-making and providing the most efficient treatment to the patients. This study aims to optimize of the brain tumor MR images classification accuracy using the optimal threshold, PCA and training Adaptive Neuro Fuzzy Inference System (ANFIS) w...

متن کامل

Automated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images

ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that                                                      facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...

متن کامل

Generating the synthetic CT (sCT) and synthetic MR (sMR: sT1w/sT2w) images of the brain using atlas based method

Introduction: Radiation therapy planning (RTP) is one of the clinical applications in which both CT scan and MRI are used. MR and CT images are applied to determine the target volume and calculation of dose distribution, respectively. In addition, using two imaging modalities increases the department workload and cost. In this study, an algorithm was presented to create synthet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013